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ABSTRACT

Two recently developed approaches for calculating properties of
materials going beyond the density functional formalism'are discussed. For
excited-state properties, a first-principles quasiparticle theory has been

developed. The electron self-energy operator is calculated using the full
dielectric matrix and the dressed Green's function. Electron excitation

spectra are interpreted as transitions between quasiparticle states of an
interacting many-electron system. For ground-state properties, a new method
using nonlocal pseudopotentials in conjunction with the variational quantum
Monte Carlo approach is introduced. Electron correlations are treated using
the exact interaction with a correlated wavefunction of the Jastrow-Slater

form. Selected examples from bulk, surface, and interface calculations are
presented to illustrate the capabilities of these two approaches.

I. INTRODUCTION

A number of methods, going beyond pair-potentials, now exist for

calculation of the structural and electronic properties of materials. These
range from the use of classical many-body atomic potentials to semiemplrical
quantum approaches to parameter-free ab initio methods.' Among the flrst-
principles methods, basically one of the following two approaches is
employed in treating many-electron correlations: (1) the Hartree-rock plus
correlation corrections approach or (2) the local density functional
formalism (LDA). The LDA is by far the more commonly employed approach.
The Hartree-Fock-plus-corrections calculations have been mostly restricted

to the lighter elements and to binding energies.

. The LDA2 has been applied to a wide range of materials with many
successes.3,4 Among them are some striking results on the structural

properties, vibrational properties, electron-phonon and phonon-phonon
interaction parameters, and structural phase transitions. There are;

however, problems with the LDA. The binding energies are significantly too
large for virtually all molecular and solid-state systems. The ground-state
properties of many magnetic and other highly correlated electron systems are
nQt well de~cr1bed. Flnally, slnce the density functional formalism is a
ground-state theory, the eigenvalues from the LDA do not give accurate band
gaps or in general electron excitation energies.5

1



In this paper, we give a short review of two recent theoretical
developments in first-principles calculation of the ground- and excited-
state properties of real materials. The calculated results are shown to be
in significantly better agreement with experiment than those from state-or-
the-art LDA or Hartree-Fock methods. The paper is organized as follows. In

Sec. II, a quasiparticle approach6 for excitation energies in solids is
discussed. Results for bulk solids as well as for semiconductor surfaces

andheterojunctionsare presented to illustrate the general applicability of

the method. In Sec. III, an approach7 which combines the use of variational
quantum Monte Carlo techniques with nonlocal pseudopotentials for ground-
state properties is presented. Results from calculations on diamond and
graphite are discussed. Finally, in Sec. IV we present a summary and some
conclusions. '

II. QUASIPARTICLES AND EXCITED-STATE PROPERTIES
-

It is well known now that, since the density functional formalism2 is a
ground-state theory, LDA calculations do not provide in principle direct

information on the excitation spectra of an electronic system. Indeed, in
most cases, the practice of comparing LDA eigenvalues to spectroscopic data
has led to rather severe discrepancies.4 For example, the band gaps of
semiconductors and insulato~s are drastically underestimated in the LDA by
as much as 50% or more (see Table I). The optical and photoemission spectra
of both bulk and surface states are similarly not well-described. The same

problem exists even for the band gaps and widths of the simple metals such
as sodium.8 The reason for these discrepancies is that the interpretation
of excitation spectra such as those measured in optical, photoemission or
transport experiments requires the concept of quasi particles, the particle-
like excitations in an interacting many-body system.5,9

Recently, several many-body approaches have been proposed for calculat-

ing (either semi-empirically or from first-principles) the ~uasiPartlcle
properties of solids going beyond the one-particle picture. ,10-14 For the
special case of the minimum gap in insulators, an explicit correction to the
Kohn-Sham minimum gap has also been derived and calculated.14 For a com-

plete description of'the excitation spectrum, direct quasiparticle calcula-

tions are however necessary. First-principles methods are of special
importance for predicting the properties of new materials and those of
defects or surfaces and interfaces.

In this section, we present a brief review of a first-principles
quasiparticle approach6 which has shown to give highly accurate excited-
state properties for real materials with basically the atomic number of the
constituent elements as the only input. The method is based on the so-

Table I.
Comparison of calculated band gap Eg (in eV) with experiment.
The results for Ge include relativistic effects.
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LDA Present Theory Experiment

Diamond 3.9 5.6 5.48a
Silicon 0.52 1.29 1.17a
Germanium <0 0.75 0.744a
LiC! 6.0 9.1 9.4b

aRef. 21 bRef. 22



called GW approximation15 in which the electron self-energy operator is
calculated to first order in the dressed Green's function G and the screened
Coulomb interaction W. .

A.' The Self-Energy Approach

In the present approach, the quasiparticle energies are given by6,9

+ + + + + +
(T + Vext + VH>' +(r) + 1 dr't(r,r';Enk)' +(r') . E +, +(r)nk nk nk nk

where T is the kinetic energy operator, Vext is the external potential due

to the ions, VH is the average (Hartree) Coulomb potential, and the exchange
and correlation contributions are included in the self-energy operator, t.

In general, t is nonlocal, energy-dependent, and nonHermitian with the
imaginary part giving the lifetime of the quasiparticles.

(1)

.----------

The self-energy operator t can be systematically expanded in a series in
terms of the screened Coulomb interaction W and the fully dressed Green's

function G.15 In the GW approximation, t is taken to be the first-order
termwith .

+ +
icS

+ + + +-
t(r,r'iE) . i 1 (d~/2v)e- ~G(r,r';E - ~)W(r,r';~) , (2)

where cSis a positive infinitesimal. The major components of the theory are
then the fully interacting Green's function for which we use a quasiparticle
approximation

++ ""
G(r ,r' iE) - L..

+
nk

and the dynamically

+ * +
, +(r)1P "'(r')nk nk
E - E + - i6 +

nk nk
screened Coulomb

(3)

interaction

++ 1 ... 1 +... + +

W(r,r';~) . Q- 1 dr"£- (r,r"i~)Vc(r" - r') , (4)

where £ is the time-ordered dielectric matrix whose off-diagonal elements in

Fourier space describe the local fields (variation in the screening in the

unit cell due to charge inhomogenlety) and Vc 1s the bare Coulomb
interaction. Our approach6 is to take Eq. (2) as the basic approximation
and proceed to calculate t from first principles with minimum further
approximations. .

The quasiparticle energies together with t and G must be obtained in a
self-consistent fashion. In the calculations, the electron Green's function

is constructed initially using the LDA Kohn-Sham eigenfunctions and

eigenvalues and is sUbsequently updated w!t~ the quasiparticle spectrum from
Eq. (1). The static dielectric matrix £(r,r',~. 0) is o~tained as a

ground-state quantity from the LDA calculation and extended to finite
frequencies using a generalized plasmon pole model with exact sum rUles.6,16

This approach has been applied successfully to a variety of solids
including semlconductors,6 ionic insulators,17 and metals18 as well as
surfaces19 and interfaces.20 For a full physical description of the quasi-
particles, it is found that the use of the crystalline Green's function and
inclusion of both local fields (the full dielectric matrix)' and dynamical
screening effects are important factors. For semiconductors and insulators,
local field effects are of crucial importance. For the alkali metals, the
quasiparticle bandwidths are shown to be also sensitive to the treatment of

exchange-correlation effects in the dielectric screening.18

':\



I

B. Band Gaps and Excitation Spectra of Crystals

Very accurate band gaps, optical transition energies, and photoemission
spectra have been obtained using the quasiparticle approach.6,17,18 For the
case of the minimum gap, this is illustrated in Table I where the calculated

results for several selected crystals are compared to the experimental
values. As seen from the table, the gaps open up dramatically as compared
to the LDA eigenvalues. Similar results have been obtained for the ionic

semiconductors, e.g. GaAs and AtAs.20,23 This level of accuracy is achieved
only when both local fields and dynamical screening effects are included in
the evaluation of the electron self-energy operator.

For the optical properties of semiconductors, the agreement between
theory and experiment is generally.at the same level as for the minimum
gaps. A comparison between experimental direct optical transit-ions21,24-27
and calculated results are~given in Table II for diamond, Si and Ge. The

theoretical results are within 0.1-0.2 eV of the experimental values for all
transitions except for the very high energy ones in diamond where the
experimental uncertainties are large. This excellent agreement is a

dramatic improvement over previous theories.10-13 In fact, the present
quasiparticle results are comparable to results from the Empirical Pseudo-

potential Method2B' in which the.band structure is obtained by fitting to
optical data using several parameters.

In addition to the minimum band gaps and optical transition energies,
the theory yields excellent band dispersions. Figure 1 depicts the
calculated Ge quasiparticle valence band structure together with data from

angle-resolved photoemission measurements.29 The agreement between theory
and experiment is generally within experimental errors. Similar levels of
agreement with experiment have been obtained for other semiconductors and

for empty band states as measured in inverse photoemlssionexperiments.6 A
comparison of the calculated band structure with photoemission data for Na30
is given in Fig. 2. The surprisingly large observed bandwidth reduction is

Table II. Comparison between theory and experiment for
optical transitions in Ge, Si, and diamond
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LDA Present Work Experiment

Ge

r7v ... rav 0.30 0.30 0.297a

rav ...r1c -0.07 0.71 0.Ba7a

r8v ... r 6c 2.34 3.04 3.006a

rBv ... r8c 2.56 3.26 3.206a

X5v ...XSc 3.76 4.45 4.501a

Si

r25'v ...r15c 2.57 3.35 3.4b
r25'v ...r2'c 3.26 4.08 4.2c

L3'v ...L1c 2.72 3.54 3.45b

L3'v ...L3c 4.58 5.51 5.50b

Diamond

r25'v ...r15c 5.5 7.5 7.3d
r2S'v ...r2'c 13.1 148 15.3 :t .5e

X4v .. X1c 10.8 12.9 12.5c

aRef.' 24 bRet. 25 cRef. 21 dRef. 26 eRef. 27



Fig. 1. Photoemission data from
Ref. 29 vs. theoretioal quasi-
partioles energies.

Fig. 2. Quasipartiole energies for Na:
Experimental data fromRef. 30
(orosses), LDAeigenvalues (dashed
line), and oaloulated quasiparticle
energies (filled oiroles).

explained by the selt-energy effects although the origin of the dlspers1on-
less feature near the Fermi energy remains a subject of debate.

Another important result from the oaloulations is that the quasipar-
tiole wavetunctions are found to be remarkably well represented by the LDA
wavefunction. For the materials considered, the quasipartiole wavefunotion,
1n general, has better than 99.95% overlap with the oorresponding LDAwave-
function although the energy spectrum is altered signifioantly as seen 1n
Table I. The approximation of using only" the diagonal element <nkltlnk> in
evaluating the quasipartiole energies leads to errors ranging fromless than
.0.01eV tor Si to less than 0.05eV for LiCl. This approximaiton thus may
be used with only negligible loss of aoouracy 1n the finalquasiparticle
energies.

C. Surfaoe.and Interfaces

The quasiparticle theory has been extended to surfaces and interfaces.
We discuss here results for two prototypioal systems -- the As-capped
Si(111) and Ge(111) surtaces19 and the GaAs-A1As(001)heterojunction.20 The
major objectiveis to provide a predictive theory for surface-state energies
and band offsets at interfaces.

At saturation coverage, the chemisorbed As atoms are foundto substitute
for the outermost-layer atoms on the Si(111) and Ge(111) surface.31-33 The

surface becomes chemically inactive and is stable against reconstruction
showing a 1 x 1 periodicity. These are good prototype systems for the many-
body calculations because of their geometric simplicity and the availability

of detailed experimental data.31-33 They are also of intrinsic importance
as an initial stage of growth of GaAs on Si and Ge. The calculatlons19 were

carried out using a repeated slab geometry with a 12-1ayer thiok slab. The
surface geometry was determined by a LDA total energy minimization. After
the structure has been determined, the quasiparticle energies for both the

5

21 I

1.0
Ge I Na

01.
0.0

-2

-4 > -1.0
$' '-'
.!. g.

-6 a
r::I...

CD -2.0cw
-8, .... - Theory

0 Experiment
-10 '1YPicai error

-12I- _I ./ '""1 0.00 0.50 1.00

-14 I I I r-N
L A r .d X

Wavevectork



bulk and surface states are then calculated using the same formalism as in
the case of bulk crystals.

Figure 3 depicts the calculated quasiparticle energies for the As-capped
Sl(111) system. The quasiparticle surface-state bands (solid lines)
together with the LDA surface-state bands (dashed lines) are plotted against
the projected quasiparticle band structure of Si. The zero of the energy
scale is set at the valence band maximum. As expected, the fully occupied
surface band corresponds to the lone-pair states of the As adatoms. These
surface states have been studied in detail using angle-resolved photo-
emission techniques.31 The theory also predicted an empty surface state
band in the gap. These empty states correspond to backbond surface states.
Very similar results are obtained for the Ge(111)-As surface.

For both the Si(111)-As and Ge(111)-As surface, the occupied quasipar-

ticle surface-state band is lower in energy and has a broader dispersion as
compared to the LDA results. These changes brln-g~~he--tneoretlcalenergies --
into close agreement with experiment. Figures 4 and 5 compare the quasipar-
ticle surface-state band with angle-resolved photoemission data. The agree-
ment is excellent in both the placement and the width of the band and is

well within the estimated errors of % 0.1 eV with experiment and theory. As
seen in Fig. 3, the effect of many-body correction to the LDA values on the
empty surface states is even more dramatic. These states are substantially
shifted upwards in energy, opening up the gap between empty and occupied
surface states by nearly an extra 1 eV at some k-points. A scanning tunnel-
ing microscopy study34 has recently been done for the Si(111)-As surface to
search for these states. Not only is the l'x 1 surface structure seen
directly, the observed surface-state gap of 1.9 - 2.3 eV in.the normalized
ditferential conductivity agrees very well with the predicted value of 2.2
eVe

The surface quasiparticle results, therefore, address the difficulties
associated with the LDA surface-state energies in ways very similar to the
bulk excitation energies. In particular, the gap between the empty and
filled surface states is substantially opened in comparison with the LDA
surface-state gap. Analysis of the calculated results,19 however, shows
that the size of the correction depends on the detailed character of the
surface states which can have a substantially ditferent character than the
bulk states. This means that the shortcomings of the LDA surface-state
spectra cannot easily be corrected by a simple rigid shift derived from bulk
data.

Using the same theoretical techniques, we have computed the band
offsets of the GaAs-A1As(001) interface.20 The band discontinuities at a
semiconductor interface are simply the differences in the quasiparticle

energy E p across the junction for the band edge states. Since, as
mentlone~ above, the quasiparticle wavefunctions are virtually identical to

the LDA wavetunctions, we may write Eqp near an interface as
+

Eqp LDA ~ Vnk+ . e: + + '" + -
nk nk nk xc

+
nk

where tnk and Vxc are, respectively, the expectation value
energy operator and the LDA exchange-correlation potential

state. Then, the valence band offset AEv becomes

AEv . AE~DA + °vbm

(5)

of the self-

for a given

(6)

where AE~DA is the LDA calculated valence band offset and °vbm is a many-
body correction given by
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( )
vbm

( )
Vbm

°vbm - t - Vxc GaAs - t - Vxc AtAs . (7)

Since the quasiparticle energies in determining the band offsets should be
evaluated at a distance away from the interface and both t and Vxc are short

range interactions, (t - Vxc)vbm can be replaced by their bulk values. To
calculate the LDA band offsets, we perform a 12-layer superlattice
calculation using an approach similar to that of Van de Walle and Martin.36

We find that the many-body correction to the valence band offset is

Quite significant; that is, °vbm. 0.12 eVe It is about 30% of the LDA
result of AE~DA - 0.41 eVe Equation (6) thus gives a calculated value of
AEv - 0.53 eV which is in good agreement with recent experimental values of
0.53 - 0.56 eV.37 The sign of the many-body oorrection can also be under-
stood in terms of a more localized valence band wavefunction for AtAs which

leads to a more negative self-energy for the valence band states of AlAs as

compared to GaAs, and, hence, a positive value for °vbmas defined by Eq-; ~ -

(7). We expect that similar corrections will be even more important for
junctions that are made of materials with lesser chemical similarities than
GaAs and A1As.

III. QUANTUM MONTE CARLO CALCULATION OF GROUND-STATE PROPERTIES

In this section we describe a method7 of performing variational quantum
Monte Carlo calculations for solids and atoms using nonlocal pseudopoten-

tials. The goal is to provide a first principles method which would be
capable ot treating accurately the properties of some of the strongly corre-
lated electronic systems.

A. Variational Quantum Monte Carlo Method with Nonlocal Pseudopotentials

The variational Quantum Monte Carlo (QMC) method was pioneered by
McMillan38 to study liquid He4 and first applied to fermion liquid problems
by Ceperley, Chester, and Kalos.39 However, a straightforward application
of the method to the electronic properties of real materials has been
severely hampered by a number of conceptual and technical problems. Among
these include the treatment of the single-particle orbitals in the presence
'of electron correlations and the very rapid growth of computation effort
with increasing atomic number caused by fluotuations in the energies of
electrons in the core region. 40, This has prompted our development of a..-
quantum Monte Carlo pseudopotential approach, which incorporates the effects
of the core electrons in an ionic potential. The ionic pseudopotentials

used are the norm-conserving pseudopotentials.4, The integral operator
which arises in the nonlocal pseudopotential makes the present problem
different from previously considered QMC problems. However, this operator
can be evaluated statistically within the variational QMC methodwitha
computational effort comparable to that for the kinetic e~ergy.7,42

In-the present approach, a correlated trial wavefunction of the Jastrow-
Slater form,

+ +

{

N + +

}

+ +

'P(r,'H.,rN> - exp r x(ri) - r u(rij) D(r, ,.e.,rN> ,
i-1 1~i<j~N

(8)

is employed where D is a Slater determinant of LDA single-particle wavefunc-
tions. For this wavefunction we evaluate the expectation value of the exact
many-electron Hamiltonian

7
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N

{

K2 + 1 \ e2

}H. r -2m vf + Vext(ri) + 2' L rij ,i-l j-i
(9)

whichconsists of the usual three terms: the kinetic energy of the valence
electrons, an external potential due to the ions, and the Coulomb interact-
tions between the electrons. The many-body integrals are evaluated using
the Metropolis Monte Carlo algorithm43 for importance sampling with the
importance function 1'12. In the calculation, the kinetic and electron-
electron energies are evaluated as in Ref. 39. The external potential is
the sum of the ionic pseudopotentials which have a local and a (short-range)
nonlocal part~ The value of the local potential at each configuration of
the random walk is evaluated using Ewald summation techniques. The value of
the nonlocal potential is evaluated using a statistical method with a
special point sCheme.7.42

_. ... ... . -. - +

The two-particle correlation-term, u(rij)' in the Jastrow factor lowers
the energy by reducing the probability of two electrons coming close togeth-
er. In the solid, this term is taken to be of the standard form,39 u(r) -
A[1 - exp(- r/F)]/r, with A and F as spin-dependent variational parameters.
For diamond and graphite, the optimum values for A and F are found to be
very close to the values given by the physical considerations of the so-
called "tail" and "cusp" conditions.39 In the atom, we have used both the
form of u{r) for the solid and u{r) - - arl(1 + br) and obtained essentially
identical total energies.

+
The one-particle term X(r) allows a variational adjustment of the

single-particle orbitals in the presence of the two-particle term which
tends to make the charge density overly diffuse. Although not relevant in
liquids, the one-particle term is quite important for atoms and solids.
There are several possible impleme~tations of the one-particle term includ-
ing the use of an Euler-Lagrange equation for X to ~inimize the energy.42
In the calculation dlscussed here, ~e simply set X(r) -
alog[px,u-o(r)lpx-o(r)]/2, where per) is the charge density and a is a varia-
tional parameter. The optimum value of a is close to 1, as expected, since
the LDAcharge density is generally quitegood.

B. Application to Atomic Carbon, Diamond, and Graphite

The ionization energy and electron affinity of atomic carbon are
obtained by performing calculations on C(3p), C+(1p), and C-(4p). In each
case, we fixed the parameter a in u(r) using the cusp condition and searched
the b,a parameter space to determine the optimal energy. Since the atoms
are spin-polarized, different X-functions for different spin types were
used. The QMCresults, together with LDA resultsand experimentalvalues,
are presentedin Table III. The approach gives carbon ionization energy and
electron affinity in agreementwith experiment within t 0.2 eV (C- is

Table III. The theoretical and experimental valuesof electronaf-
finity and first ionization potential (in eV) for carbon.
Statistic error in the last digits is in parentheses.

E.A. 1st I.?

LDA
QMC
Experiment

C- unbound
1.05(10)

1.27

,1.16
11.43(5)
, 1.26
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Table IV. Terms in the total energy of diamond (64 electron simuiation at
a lattice constant a - 3.63 A) for a single Slater determinant of
LDA wavefunctions and for a Jastrow-Slater function with a two-

body term only in the Jastrow factor, as discussed in the text,
and with LDA wavefunotions in the determifnant. Energies in eV/
atom.

Slater Det. Jastrow-Slater

(u only)

Local Pot.
Elee-Elec
Kinetic
Non-local Pot.
Ewald-S-Wii--~-~-~ "-

Total

-87 . 1
-29.2
121 .3
.15.8

-171.0
-150.2

-73.6
-39.0
116.8

12.8
-171.0
-154.0

unbounded in LDA). Since the number of three-body interactions is very dif-
ferent for the three cases, this result suggests that the three-body terms
in th~ Jastrow factor oan only lower the energy by no more than approxi-
mately 0.2 eV/atom.

The method has been applied to study the binding energy and structural
properties of diamond. In the oalculation, simulation cells containing up
to 54 atoms (or 216 electrons) have been used. We find. that the size
depengence for larger simulations is almost entirely determined by the con-

vergence of the sinile-particle terms 1n the total energy, as given within
band theory by the k-point sampling of the Brillouin zone. The various con-
tributions to the total" energy for a specific simulation are given in Table
IV illustrating the effects of electron correlation. As is shown 1n Table
IV, the introduction of a Jastrow factor with only the two-particle term

u(rlJ) lowers the total.energy of the solid by approximately 3.8 eV/atom.
With the introduction of the Jastrow factor, the electron-electron energy is
substantially reduced. However, unlike uniform systems, the kinetic energy
also decreases. It is the electron-ion (local plus nonlocal potential
terms) which is greatly increased. The general trends in the atom are

similar. Without the one-particle term X in the Jastrow factor, the

presence of a nonzero u(riJ) alters the charge density from that of the
Slater determinant alone. Because u(r) 1s positive and a decreasing
function of r, its effect is to remove charge from the high density regions
leading to both an increase in the electron-ion energy and the decrease in
the kinetic energy.

I

The total energies obtained with and without the full Jastrow faotor

(i.e., including both the u and X terms) in the wavefunction are presented
in Table V for diamond at the minimum-energy lattice constant together with
the atomic results. The correlation energies for the valence electrons in
the atom and the solid are thus found to be 2.4 % 0.1 eV and 4.1 t 0.2 eV/
atom, respectively. These "valuesare in agreement with resul~s for the
carbon valence electrons in a recent calculation using a similar ansatz for

the man{-bodY wavetunction but evaluating the energy by diagrammatic tech-
niques. 4 Our value for the Hartree-Fock cohesive energy obtained using LDA
wavefunctions in a single Slater determinant is 5.85 ~ 0.25 eV/atom.

The final results for the binding energy of diamond in the present
approach are also given in TableV and comparedwith the LDAresult obtained
using the Ceperley-Alder form for the exchange-correlationenergy.45 We

9



Table.V. Total energies (in eV/atom) of the carbon atom and of diamond
(with finite-size correotion) for (a) LDA calculation, and for
Monte Carlo calculations with (b) single Slater determinant of LDA
wavefunotions and (c) Jastrow-Slater function with one- and two-

body terms in the Jastrow faotor. The expected statistical error
in the last digits is in parentheses.

Carbon Atom Diamond Cohesive Energy

(a) LDA
(b) Slater Det.
(c) Jastrow-Slater

(d) Experimenta

-146.79
-145.55(7)

-147.93(3)

-155.42
-151.3(2)

-155.38(6)

8.63
5.85(25)

7.45(7)
7.37

asee Ref. 46.

have included the zero-point energy of the phonons in the energy for the
solid. The quantum Monte Carlo calculation gives a cohesive energy of 7.45
~ 0.07 eV, as compared to the experimental value46 of 7.37 eV/atom. This
result is in significantly better agreement with experiment than the value
of 8.63 eV/atom computed using the LDA formalism. To obtain the structural
properties of diamond, the QMC total energies as.a function of lattice

constant are fitted with a Murnaghan equation of state, as shown in Fig. 6.
We obtain a fitted equilibrium lattice constant of 3.54 ~ 0.03 A and bulk

modulus ot 420 ~ 50 GPa~ oompared with experimental values of 3.567 A and443 GPa,respeotively.4.

To assess further the accuraoy of the method, we performed a calculation
for graphite. We obtained a cohesive energy for graphite which is identical
to the diamond cohesive energy within the statistical noise of 0.07 eV/
atom. This result is in excellent agreement with experiment since experi-
mentally, the binding energy of graphite is only 0;025 eV larger than that
of diamond.47

IV. SUMMARY AND CONCLUSIONS

We have discussed, in this brief overview, two new approaches for calcu-
lating the properties of materials going beyond density functional formal-

ism. A self-energy approach for calculating the quasiparticle energies from
first principles is presented. The electron self-energy operator is
evaluated to first order in the dressed Green's function and the screened

Coulomb interaction including local field effects. This method allows an ab

initio determination of electronic excitation energies in crystals and at --
surfaces and interfaces which can be directly compared with spectroscopic
measurements. Excellent results have been obtained for a wide-range of
materials systems showing that the method is accurate and of predictive
power. A method of calculating total energies of solids using nonlocal
pseudopotentials in conjunction with the variational quantum Monte Carlo
approach is also presented. Electron-electron correlation effects are

treated using the exact interaction and a correlated Jastrow-Slater many-
electron wavefunction. . We demonstrated the computational feasibility of the
method for solids and obtained the most accurate results to date for the

cohesive properties ot diamond and graphite. This development opens an
exciting new theoretical avenue tor studying the properties of solids,
espeoially for the highly correlated electron systems.
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